3.13.82 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [1282]

3.13.82.1 Optimal result
3.13.82.2 Mathematica [A] (verified)
3.13.82.3 Rubi [A] (verified)
3.13.82.4 Maple [B] (verified)
3.13.82.5 Fricas [A] (verification not implemented)
3.13.82.6 Sympy [F]
3.13.82.7 Maxima [B] (verification not implemented)
3.13.82.8 Giac [F]
3.13.82.9 Mupad [F(-1)]

3.13.82.1 Optimal result

Integrand size = 45, antiderivative size = 181 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(7 A-3 B-C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}}+\frac {(5 A-B+C) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

output
-1/2*(A-B+C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2)-1/4*(7*A 
-3*B-C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d 
*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)+1/2*(5*A 
-B+C)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)
 
3.13.82.2 Mathematica [A] (verified)

Time = 6.52 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.53 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {-\left ((7 A-3 B-C) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )\right )+(5 A-B+C+4 A \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{2 a d \sqrt {\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ a*Sec[c + d*x])^(3/2),x]
 
output
(-((7*A - 3*B - C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]) + (5*A - B 
+ C + 4*A*Cos[c + d*x])*Tan[(c + d*x)/2])/(2*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a 
*(1 + Sec[c + d*x])])
 
3.13.82.3 Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4753, 3042, 4572, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{(a \sec (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sec ^2(c+d x)+B \sec (c+d x)+A}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \csc \left (c+d x+\frac {\pi }{2}\right )^2+B \csc \left (c+d x+\frac {\pi }{2}\right )+A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4572

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B+C)-2 a (A-B-C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B+C)-2 a (A-B-C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-B+C)-2 a (A-B-C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-3 B-C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-3 B-C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (7 A-3 B-C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a (5 A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (5 A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} \sqrt {a} (7 A-3 B-C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

input
Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Se 
c[c + d*x])^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*((A - B + C)*Sqrt[Sec[c + d*x] 
]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(3/2)) + (-((Sqrt[2]*Sqrt[a]*(7*A 
- 3*B - C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt 
[a + a*Sec[c + d*x]])])/d) + (2*a*(5*A - B + C)*Sqrt[Sec[c + d*x]]*Sin[c + 
 d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4*a^2))
 

3.13.82.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4572
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*Csc[e 
+ f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) 
   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - 
 A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.13.82.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(421\) vs. \(2(152)=304\).

Time = 0.86 (sec) , antiderivative size = 422, normalized size of antiderivative = 2.33

method result size
default \(\frac {\left (7 A \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+8 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}-3 B \sqrt {2}\, \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-C \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+7 A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+10 A \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}-3 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {2}-2 B \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}-C \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+2 C \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 a^{2} d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(422\)

input
int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2 
),x,method=_RETURNVERBOSE)
 
output
1/4/a^2/d*(7*A*cos(d*x+c)*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x 
+c))/(-1/(1+cos(d*x+c)))^(1/2))+8*A*cos(d*x+c)*sin(d*x+c)*(-1/(1+cos(d*x+c 
)))^(1/2)-3*B*2^(1/2)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+ 
c))/(-1/(1+cos(d*x+c)))^(1/2))-C*cos(d*x+c)*2^(1/2)*arctan(1/2*sin(d*x+c)* 
2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+7*A*2^(1/2)*arctan(1/2*s 
in(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+10*A*sin(d*x+c 
)*(-1/(1+cos(d*x+c)))^(1/2)-3*B*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c 
))/(-1/(1+cos(d*x+c)))^(1/2))*2^(1/2)-2*B*sin(d*x+c)*(-1/(1+cos(d*x+c)))^( 
1/2)-C*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x 
+c)))^(1/2))+2*C*sin(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^(1/2)*(a 
*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))^2/(-1/(1+cos(d*x+c)))^(1/2)
 
3.13.82.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 430, normalized size of antiderivative = 2.38 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - 3 \, B - C\right )} \cos \left (d x + c\right ) + 7 \, A - 3 \, B - C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (4 \, A \cos \left (d x + c\right ) + 5 \, A - B + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - 3 \, B - C\right )} \cos \left (d x + c\right ) + 7 \, A - 3 \, B - C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (4 \, A \cos \left (d x + c\right ) + 5 \, A - B + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="fricas")
 
output
[-1/8*(sqrt(2)*((7*A - 3*B - C)*cos(d*x + c)^2 + 2*(7*A - 3*B - C)*cos(d*x 
 + c) + 7*A - 3*B - C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 
2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(4*A*co 
s(d*x + c) + 5*A - B + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos 
(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^ 
2*d), 1/4*(sqrt(2)*((7*A - 3*B - C)*cos(d*x + c)^2 + 2*(7*A - 3*B - C)*cos 
(d*x + c) + 7*A - 3*B - C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(4*A*co 
s(d*x + c) + 5*A - B + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos 
(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^ 
2*d)]
 
3.13.82.6 Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c))**(3/2),x)
 
output
Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(cos(c + d*x))/(a*(s 
ec(c + d*x) + 1))**(3/2), x)
 
3.13.82.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9341 vs. \(2 (152) = 304\).

Time = 0.60 (sec) , antiderivative size = 9341, normalized size of antiderivative = 51.61 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="maxima")
 
output
-1/4*((4*(7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/ 
2*d*x + 1/2*c) + 1) - 7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^ 
2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sin(1/2*d*x + 1/2*c))*cos(3/2*d*x + 3/ 
2*c)^4 + 63*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(1/2*d*x + 1/2*c)^4 + 4*(7*log(cos(1/2* 
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 7* 
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2* 
c) + 1) - 8*sin(1/2*d*x + 1/2*c))*sin(3/2*d*x + 3/2*c)^4 + 70*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c)^2*sin(1/2*d*x + 1/2*c)^2 + 7*(log(cos(1/2*d*x 
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(c 
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 
1))*sin(1/2*d*x + 1/2*c)^4 - 8*sin(1/2*d*x + 1/2*c)^5 + 28*(7*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c) - 8*cos(1/2*d*x + 1/2*c)*sin(1/2*d*x + 1/2*c) 
)*cos(3/2*d*x + 3/2*c)^3 + 4*(21*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 ...
 
3.13.82.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*se 
c(d*x + c) + a)^(3/2), x)
 
3.13.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x))^(3/2),x)
 
output
int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/co 
s(c + d*x))^(3/2), x)